Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 587: 112212, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521400

RESUMO

RESEARCH QUESTION: Premature ovarian insufficiency (POI) is characterised by amenorrhea associated with elevated follicle stimulating hormone (FSH) under the age of 40 years and affects 1-3.7% women. Genetic factors explain 20-30% of POI cases, but most causes remain unknown despite genomic advancements. DESIGN: We used whole exome sequencing (WES) in four Iranian families, validated variants via Sanger sequencing, and conducted the Acyl-cLIP assay to measure HHAT enzyme activity. RESULTS: Despite ethnic homogeneity, WES revealed diverse genetic causes, including a novel homozygous nonsense variant in SYCP2L, impacting synaptonemal complex (SC) assembly, in the first family. Interestingly, the second family had two independent causes for amenorrhea - the mother had POI due to a novel homozygous loss-of-function variant in FANCM (required for chromosomal stability) and her daughter had primary amenorrhea due to a novel homozygous GNRHR (required for gonadotropic signalling) frameshift variant. WES analysis also provided cytogenetic insights. WES revealed one individual was in fact 46, XY and had a novel homozygous missense variant of uncertain significance in HHAT, potentially responsible for complete sex reversal although functional assays did not support impaired HHAT activity. In the remaining individual, WES indicated likely mosaic Turners with the majority of X chromosome variants having an allelic balance of ∼85% or ∼15%. Microarray validated the individual had 90% 45,XO. CONCLUSIONS: This study demonstrates the diverse causes of amenorrhea in a small, isolated ethnic cohort highlighting how a genetic cause in one individual may not clarify familial cases. We propose that, in time, genomic sequencing may become a single universal test required for the diagnosis of infertility conditions such as POI.


Assuntos
Amenorreia , Insuficiência Ovariana Primária , Humanos , Feminino , Adulto , Masculino , Amenorreia/diagnóstico , Amenorreia/genética , Irã (Geográfico) , Insuficiência Ovariana Primária/genética , Mutação de Sentido Incorreto , Genômica , DNA Helicases/genética
2.
J Med Chem ; 67(2): 1061-1078, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198226

RESUMO

Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-µM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.


Assuntos
Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Piridinas/química , Piridinas/farmacologia
3.
J Med Chem ; 66(13): 8767-8781, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37352470

RESUMO

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and essential signaling protein associated with inflammation and cancers. One of the newly described roles of MIF is binding to apoptosis-inducing factor (AIF) that "brings" cells to death in pathological conditions. The interaction between MIF and AIF and their nuclear translocation stands as a central event in parthanatos. However, classical competitive MIF tautomerase inhibitors do not interfere with MIF functions in parthanatos. In this study, we employed a pharmacophore-switch to provide allosteric MIF tautomerase inhibitors that interfere with the MIF/AIF co-localization. Synthesis and screening of a focused compound collection around the 1,2,3-triazole core enabled identification of the allosteric tautomerase MIF inhibitor 6y with low micromolar potency (IC50 = 1.7 ± 0.1 µM). This inhibitor prevented MIF/AIF nuclear translocation and protects cells from parthanatos. These findings indicate that alternative modes to target MIF hold promise to investigate MIF function in parthanatos-mediated diseases.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Parthanatos , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator de Indução de Apoptose , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo
4.
Cell Chem Biol ; 30(5): 415-417, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207629

RESUMO

In this issue of Cell Chemical Biology, Zhan et al. report dual-pharmacophore molecules ("artezomibs"), combining an artemisinin and proteasome inhibitor that exhibit potent activity against both wild-type and drug-resistant malarial parasites.1 This study indicates that artezomibs offer a promising approach to combat drug resistance encountered by current antimalarial therapies.


Assuntos
Antimaláricos , Antimaláricos/química , Complexo de Endopeptidases do Proteassoma , Resistência a Medicamentos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química
5.
Eur J Med Chem ; 247: 115053, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587419

RESUMO

Herein 2-cyanoethoxy-N,N,N',N'-tetraisopropyl-phosphorodiamidite(10, PIII, 3.5 eq.) could synergistically react with 3',5'-dihydroxyl groups in a dinucleotide(PV) at the cyclization step for the synthesis of cyclic dinucleotides (CDNs) (c-di-GMP, cGAMP etc.) and their phosphorothioated analogues. A dynamic PIII-PV coordination mechanism has been proposed for the cyclization procedure which is confirmed by the variant 31P NMR data and molecular simulation. Among the mono-phosphorothioated CDNs, two stereoisomers showed different capacity for STING activation and the reason was predicted by molecular modeling. While compound 12b1 showed most potent ability to elicit cytokines (IFNß, IL-6, Cxcl9 and Cxcl10) induction compared to another stereoisomer. Also, 12b1 significantly inhibited the tumor growth in the EO771 model with both 0.1 µg (i.t.) and 2 µg (i.v.) administration through the aid of a Mix delivery system developed by our group, and achieved a 31% long-term survival rate of tumor-bearing mice. 12b1/Mix significantly improved the percentage of CD8+ or CD4+ effector memory T (Tem, CD44highCD62Llow) cells and CD8+ central memory T (Tcm, CD44highCD62Lhigh) cells in the blood of EO771 mice, inducing the immune memory against EO771 tumor cells. Relatively lower dose regimens of 12b1(0.1 µg)/Mix displayed better tumor suppression by more potent STING pathway activation and higher levels of cytokines induction in the tumor.


Assuntos
Citocinas , Neoplasias , Animais , Camundongos , Lipídeos , Nucleotídeos de Citosina/química , Nucleotídeos de Citosina/metabolismo
6.
Cell Mol Life Sci ; 79(2): 105, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35091838

RESUMO

The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Sobrevivência Celular/fisiologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Homeostase/fisiologia , Humanos , Ligação Proteica
7.
J Med Chem ; 65(3): 2059-2077, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041425

RESUMO

The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 µM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Pirimidinonas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/metabolismo , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
8.
Chemistry ; 28(1): e202103030, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34724273

RESUMO

Macrophage migration inhibitory factor (MIF) and its homolog MIF2 (also known as D-dopachrome tautomerase or DDT) play key roles in cell growth and immune responses. MIF and MIF2 expression is dysregulated in cancers and neurodegenerative diseases. Accurate and convenient detection of MIF and MIF2 will facilitate research on their roles in cancer and other diseases. Herein, we report the development and application of a 4-iodopyrimidine based probe 8 for the selective labeling of MIF and MIF2. Probe 8 incorporates a fluorophore that allows in situ imaging of these two proteins. This enabled visualization of the translocation of MIF2 from the cytoplasm to the nucleus upon methylnitronitrosoguanidine stimulation of HeLa cells. This observation, combined with literature on nuclease activity for MIF, enabled the identification of nuclease activity for MIF2 on human genomic DNA.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Células HeLa , Humanos , Oxirredutases Intramoleculares
9.
Bioorg Chem ; 117: 105396, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649152

RESUMO

Non-small-cell lung carcinoma (NSCLC) is one of the most common forms of lung cancer, and a leading cause of cancer death among human beings. There is an urgent demand for novel therapeutics for the treatment of NSCLC to enhance the efficacy of the currently applied Tyrosine kinase inhibitors (TKIs) therapy and to overcome therapy-resistance. Here, we report a novel small-molecule inhibitor that simultaneously targets histone deacetylase (HDAC) and macrophage migration inhibitory factor (MIF). The HDAC/MIF dual inhibitor proved to be toxic for EGFR mutated (H1650, TKI-resistant) or knock out (A549 EGFR-/-) NSCLC cell lines. Further experiments showed that HDAC inhibition inhibits cell survival and proliferation, while MIF inhibition downregulates pAKT or AKT expression level, which both interfere with cell survival. Furthermore, the combination treatment of TKI and HDAC/MIF dual inhibitor showed that the dual inhibitor enhanced TKI inhibitory efficacy, highlighting the advantages of HDAC/MIF dual inhibitor for more effective treatment of NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células A549 , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Angew Chem Int Ed Engl ; 60(40): 21875-21883, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34388301

RESUMO

Lipoxygenase (LOX) activity provides oxidative lipid metabolites, which are involved in inflammatory disorders and tumorigenesis. Activity-based probes to detect the activity of LOX enzymes in their cellular context provide opportunities to explore LOX biology and LOX inhibition. Here, we developed Labelox B as a potent covalent LOX inhibitor for one-step activity-based labeling of proteins with LOX activity. Labelox B was used to establish an ELISA-based assay for affinity capture and antibody-based detection of specific LOX isoenzymes. Moreover, Labelox B enabled efficient activity-based labeling of endogenous LOXs in living cells. LOX proved to localize in the nucleus, which was rationalized by identification of a functional bromodomain-like consensus motif in 15-LOX-1. This indicates that 15-LOX-1 is not only involved in oxidative lipid metabolism, but also in chromatin binding, which suggests a potential role in chromatin modifications.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Conformação Molecular
11.
Angew Chem Int Ed Engl ; 60(32): 17514-17521, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34018657

RESUMO

Macrophage migration inhibitory factor (MIF) is involved in protein-protein interactions that play key roles in inflammation and cancer. Current strategies to develop small molecule modulators of MIF functions are mainly restricted to the MIF tautomerase active site. Here, we use this site to develop proteolysis targeting chimera (PROTAC) in order to eliminate MIF from its protein-protein interaction network. We report the first potent MIF-directed PROTAC, denoted MD13, which induced almost complete MIF degradation at low micromolar concentrations with a DC50 around 100 nM in A549 cells. MD13 suppresses the proliferation of A549 cells, which can be explained by deactivation of the MAPK pathway and subsequent induction of cell cycle arrest at the G2/M phase. MD13 also exhibits antiproliferative effect in a 3D tumor spheroid model. In conclusion, we describe the first MIF-directed PROTAC (MD13) as a research tool, which also demonstrates the potential of PROTACs in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Benzoxazinas/farmacologia , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Ftalimidas/farmacologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/síntese química , Benzoxazinas/síntese química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Oxirredutases Intramoleculares/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/química , Ftalimidas/síntese química , Proteólise/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
12.
J Med Chem ; 63(20): 11920-11933, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32940040

RESUMO

Macrophage migration inhibitory factor (MIF) is a cytokine with key roles in inflammation and cancer, which qualifies it as a potential drug target. Apart from its cytokine activity, MIF also harbors enzyme activity for keto-enol tautomerization. MIF enzymatic activity has been used for identification of MIF binding molecules that also interfere with its biological activity. However, MIF tautomerase activity assays are troubled by irregularities, thus creating a need for alternative methods. In this study, we identified a 7-hydroxycoumarin fluorophore with high affinity for the MIF tautomerase active site (Ki = 18 ± 1 nM) that binds with concomitant quenching of its fluorescence. This property enabled development of a novel competition-based assay format to quantify MIF binding. We also demonstrated that the 7-hydroxycoumarin fluorophore interfered with the MIF-CD74 interaction and inhibited proliferation of A549 cells. Thus, we provide a high-affinity MIF binder as a novel tool to advance MIF-oriented research.


Assuntos
Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Umbeliferonas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Umbeliferonas/síntese química , Umbeliferonas/química
13.
Bioorg Med Chem Lett ; 30(17): 127409, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738979

RESUMO

Infections caused by Pseudomonas aeruginosa become increasingly difficult to treat because these bacteria have acquired various mechanisms for antibiotic resistance, which creates the need for mechanistically novel antibiotics. Such antibiotics might be developed by targeting enzymes involved in the iron uptake mechanism because iron is essential for bacterial survival. For P. aeruginosa, pyoverdine has been described as an important virulence factor that plays a key role in iron uptake. Therefore, inhibition of enzymes involved in the pyoverdine synthesis, such as PvdP tyrosinase, can open a new window for the treatment of P. aeruginosa infections. Previously, we reported phenylthiourea as the first allosteric inhibitor of PvdP tyrosinase with high micromolar potency. In this report, we explored structure-activity relationships (SAR) for PvdP tyrosinase inhibition by phenylthiourea derivatives. This enables identification of a phenylthiourea derivative (3c) with a potency in the submicromolar range (IC50 = 0.57 + 0.05 µM). Binding could be rationalized by molecular docking simulation and 3c was proved to inhibit the bacterial pyoverdine production and bacterial growth in P. aeruginosa PA01 cultures.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oligopeptídeos/metabolismo , Feniltioureia/análogos & derivados , Regulação Alostérica/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Desenho de Fármacos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Oligopeptídeos/química , Feniltioureia/metabolismo , Feniltioureia/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Relação Estrutura-Atividade
14.
J Biol Chem ; 295(3): 850-867, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31811089

RESUMO

Human macrophage migration-inhibitory factor (MIF) is an evolutionarily-conserved protein that has both extracellular immune-modulating and intracellular cell-regulatory functions. MIF plays a role in various diseases, including inflammatory diseases, atherosclerosis, autoimmunity, and cancer. It serves as an inflammatory cytokine and chemokine, but also exhibits enzymatic activity. Secreted MIF binds to cell-surface immune receptors such as CD74 and CXCR4. Plants possess MIF orthologs but lack the associated receptors, suggesting functional diversification across kingdoms. Here, we characterized three MIF orthologs (termed MIF/d-dopachrome tautomerase-like proteins or MDLs) of the model plant Arabidopsis thaliana Recombinant Arabidopsis MDLs (AtMDLs) share similar secondary structure characteristics with human MIF, yet only have minimal residual tautomerase activity using either p-hydroxyphenylpyruvate or dopachrome methyl ester as substrate. Site-specific mutagenesis suggests that this is due to a distinct amino acid difference at the catalytic cavity-defining residue Asn-98. Surprisingly, AtMDLs bind to the human MIF receptors CD74 and CXCR4. Moreover, they activate CXCR4-dependent signaling in a receptor-specific yeast reporter system and in CXCR4-expressing human HEK293 transfectants. Notably, plant MDLs exert dose-dependent chemotactic activity toward human monocytes and T cells. A small molecule MIF inhibitor and an allosteric CXCR4 inhibitor counteract this function, revealing its specificity. Our results indicate cross-kingdom conservation of the receptor signaling and leukocyte recruitment capacities of human MIF by its plant orthologs. This may point toward a previously unrecognized interplay between plant proteins and the human innate immune system.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Histocompatibilidade Classe II/genética , Imunidade Inata/genética , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Receptores CXCR4/genética , Antígenos de Diferenciação de Linfócitos B/química , Arabidopsis/genética , Arabidopsis/imunologia , Quimiotaxia/genética , Quimiotaxia/imunologia , Sequência Conservada/genética , Sequência Conservada/imunologia , Citocinas/genética , Citocinas/imunologia , Células HEK293 , Antígenos de Histocompatibilidade Classe II/química , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/química , Fatores Inibidores da Migração de Macrófagos/imunologia , Monócitos/química , Monócitos/metabolismo , Ligação Proteica/genética , Receptores CXCR4/química , Homologia de Sequência , Linfócitos T/química , Linfócitos T/metabolismo
15.
Eur J Med Chem ; 186: 111849, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767137

RESUMO

Macrophage migration inhibitory factor (MIF) is a versatile protein that plays a role in inflammation, autoimmune diseases and cancers. Development of novel inhibitors will enable further exploration of MIF as a drug target. In this study, we investigated structure-activity relationships of MIF inhibitors using a MIF tautomerase activity assay to measure binding. Importantly, we notified that transition metals such as copper (II) and zinc (II) interfere with the MIF tautomerase activity under the assay conditions applied. EDTA was added to the assay buffer to avoid interference of residual heavy metals with tautomerase activity measurements. Using these assay conditions the structure-activity relationships for MIF binding of a series of triazole-phenols was explored. The most potent inhibitors in this series provided activities in the low micromolar range. Enzyme kinetic analysis indicates competitive binding that proved reversible. Binding to the enzyme was confirmed using a microscale thermophoresis (MST) assay. Molecular modelling was used to rationalize the observed structure-activity relationships. The most potent inhibitor 2d inhibited proliferation of A549 cells in a clonogenic assay. In addition, 2d attenuated MIF induced ERK phosphorylation in A549 cells. Altogether, this study provides insights in the structure-activity relationships for MIF binding of triazole-phenols and further validates this class of compounds as MIF binding agents in cell-based studies.


Assuntos
Macrófagos/efeitos dos fármacos , Fenóis/farmacologia , Triazóis/farmacologia , Células A549 , Sítios de Ligação/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenóis/química , Relação Estrutura-Atividade , Triazóis/química
16.
PLoS One ; 13(10): e0205175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321196

RESUMO

Multidrug resistance protein 4 (MRP4/ABCC4) is an ATP-binding cassette (ABC) transporter. It is associated with multidrug resistance (MDR), which is becoming a growing challenge to the treatment of cancer and infections. In the context of several types of cancer in which MRP4 is overexpressed, MRP4 inhibition manifests striking effects against cancer progression and drug resistance. In this study, we combined ligand-based and structure-based drug design strategy, by searching the SPECS chemical library to find compounds that are most likely to bind to MRP4. Clustering analysis based on a two-dimensional fingerprint was performed to help with visual selection of potential compounds. Cell viability assays with potential inhibitors and the anticancer drug 6-MP were carried out to identify their bioactivity. As a result, 39 compounds were tested and seven of them reached inhibition above 55% with 6-MP. Then compound Cpd23 was discovered to improve HEK293/MRP4 cell sensibility to 6-MP dramatically, and low concentration Cpd23 (5 µM) achieved the equivalent effect of 50 µM MK571. The accumulation of 6-MP was determined by validated high-performance liquid chromatography methods, and pretreatment of the HEK293/MRP4 cells with 50 µM MK571 or Cpd23 resulted in significantly increased accumulation of 6-MP by approximately 1.5 times. This compound was first reported with a novel scaffold compared with previously known MRP4 inhibitors, which is a hopeful molecular tool that can be used for overcoming multidrug resistance research.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mercaptopurina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Desenho Assistido por Computador , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Relação Estrutura-Atividade
17.
Biomaterials ; 178: 147-157, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29933101

RESUMO

Lipid derivatives of nucleoside analogs have been highlighted for their potential for effective gene delivery. A novel class of nucleobase-lipids are rationally designed and readily synthesized, comprising thymine/cytosine, an ester/amide linker and an oleyl lipid. The diversity of four nucleobase-lipids termed DXBAs (DOTA, DNTA, DOCA and DNCA) is investigated. Besides, DNCA is demonstrated to be an effective neutral transfection material for nucleic acid delivery, which enbles to bind to oligonucleotides via H-bonding and π-π stacking with reduced toxicity in vitro and in vivo. Several kinds of nucleic acid drugs including aptamer, ssRNA, antisense oligonucleotide, and plasmid DNAs can be delivered by DXBAs, especially DNCA. In particular, G4-aptamer AS1411 encapsulated by DNCA exhibits cellular uptake enhancement, lysosome degradation reduction, cell apoptosis promotion, cell cycle phase alteration in vitro and duration prolongation in vivo, resulting in significant anti-proliferative activity. Our results demonstrate that DNCA is a promising transfection agent for G4-aptamers and exhibites bright application prospects in the permeation improvement of single-stranded oligonucleotides or plasmid DNAs.


Assuntos
DNA/química , Lipídeos/química , Oligonucleotídeos Antissenso/química , Plasmídeos/química , Transfecção , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Quadruplex G , Ligação de Hidrogênio , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/ultraestrutura , Estabilidade de RNA
18.
Org Biomol Chem ; 14(17): 4032-8, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26978575

RESUMO

2'-Positioned isonucleotides and enantiomers were used to evaluate the conservation of the spatial location of five adenines and two thymines in the catalytic core of 10-23 DNAzyme. The positive effect of isonucleotides at A15 and T8 along with inherent enzymatic resistance could be a tangible solution for the practical applications of 10-23 DNAzyme.


Assuntos
Adenina/química , DNA Catalítico/química , DNA de Cadeia Simples/química , Timina/química , Adenina/metabolismo , Biocatálise , Domínio Catalítico , DNA Catalítico/metabolismo , DNA de Cadeia Simples/metabolismo , Ativação Enzimática , Simulação de Dinâmica Molecular , Estereoisomerismo , Timina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...